If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2-78=0
a = 1; b = 0; c = -78;
Δ = b2-4ac
Δ = 02-4·1·(-78)
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{78}}{2*1}=\frac{0-2\sqrt{78}}{2} =-\frac{2\sqrt{78}}{2} =-\sqrt{78} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{78}}{2*1}=\frac{0+2\sqrt{78}}{2} =\frac{2\sqrt{78}}{2} =\sqrt{78} $
| 20+8j=12 | | 6c=48-2c | | (25)^2=(125)^(x+1) | | -x^2-x/24+5/12=0 | | 3h+2(4h-4)=3 | | 5w+3w=-32 | | 386=2(3x-7)+2x | | -4(5+2x)=-76 | | 9.5x=22.5 | | -2x+8+7x=5(x+2) | | 3f=3(3)-5 | | 25-4x^2=X | | 25-4u^2=u | | –19+13c=20 | | 1/6p+24=10 | | 4x/7x=5x/5x+15 | | 7^(5)=7^(2y+1) | | 3x-1=-4+3(1+x) | | 8=(–7–10x)+–7x | | 7g−7=5+g | | 1/2+a+a+33=108 | | 8+7u=1 | | 4(1-2x)+1=2x | | 13x2-13x+10=0 | | 7x=6 | | 28=-4f | | 8k-47=-8(5-k) | | 4x-3(4x+2)=10-2x | | (4+x)17=760 | | 3(x+1.5)=12 | | -3x/2-4=-19 | | –4s=–3s+7 |